
Communication to the editors

THE STRUCTURE, STEREO-CHEMISTRY AND REACTIONS OF THE GUANIDINE MOIETY OF VIOMYCIN

Sir :

Recently we presented evidence to suggest that the tuberculostatic antibiotic viomycin contains the unit $I^{(1)}$. More recently several papers^{2,3,4)} have lent support to this proposal and we present here the evidence allowing a complete stereochemical assign $(C_6H_3N_3O_7)_2$ requires C 35.8, H 2.7, N 22.7 %. Dihydrochloride m. p. 210~212°C (decomp.) Found: C 31.7, H 5.5, N 23.4. $C_8H_{13}N_5O_2$ · 2HCl·H₂O requires C 31.6, H 5.6, N 23.1 $[\alpha]_D^{22} - 51^\circ$ (c 0.08, in H₂O). It gave a yellow ninhydrin reaction and a negative SAKAGUCHI test. Potentiometric titration showed the presence of one carboxyl group pKa'<2.0 and three basic functions of pKa' 5.8, 6.8 and >12.0. The complete structure and absolute chirality of the dihydrobromide of viocidic acid have been determined by Xray crystallography and are as shown in III. The mode of formation of viocidic acid is

ment, together with a summary of the remarkable chemical reactivity of this unit.

Ion exchange chromatography (Dowex 50 W×8) of the acid hydrolysate (10 N hydrochloric acid, reflux for 24 hours) of viomycin afforded two basic amino acids, viomycidine and a small amount of a compound which we have termed viocidic acid. Viomycidine was characterised as its crystalline monohydrochloride m. p. $200\sim204^{\circ}$ C and our spectral and chemical data were in accord with the structure II proposed by BUCHI and RALEIGH⁵). Viocidic acid was characterised as its dipicrate m.p. $173\sim175^{\circ}$ C. Found : C 35.2, H 2.7, N 22.8. C₈H₁₃N₅O₂. yet uncertain but probably involves a reaction of the unit I which is a potential enamine with a breakdown product of the chromophoric unit⁶) of the antibiotic.

On the basis of structure III we tentatively assigned the absolute chirality, as shown, for viomycidine II and the unit I at the α and β centres. Recently two X-ray crystallographic analyses of viomycidine have been reported^{2,8)} confirming the proposed structure and one⁸⁾ confirming also our assignment of the absolute chirality.

Catalytic reduction of viomycin hydrochloride with PtO_2 in 3 N hydrochloric acid, followed by acid hydrolysis afforded no viomycidine but instead capreomycidine IV isolated as the free base m.p. 195°C (decomp.) $[\alpha]_{D}^{22.5} -22.7^{\circ}$ (c 0.17, in H₂O) identical (i. r., n. m. r., t. l. c. and o. r. d.) with an authentic sample isolated from the acid hydrolysate of capreomycin⁷⁾. We have in addition confirmed the gross structure of capreomycidine by total synthesis⁴⁾ and the above correlation with viomycidine establishes the absolute chirality.

In a recent communication MAEDA and TAKITA³⁾ reported the isolation of a 'dihydroviomycidine' from the acid hydrolysate of the sodium borohydride reduction product of viomycin which they claimed to be epicapreomycidine. Their spectral and chromatographic data for this compound were not in accord with those observed for our synthetic epi-capreomycidine⁴⁾ and on the basis of their evidence we suggested the alternative formulation V. More recently they have presented further results corroborating this structure⁸⁾.

The above observation together with the fact that viomycin gives a positive SAKAGUCHI reaction provide evidence that the unit I in solution is in equilibrium with the corresponding aldehyde form. This allows an assignment of the chirality of the guanidine carbinol centre in I since the molecule can be expected to adopt the most favourable configuration at this centre, *i.e.* the hydroxyl group in a pseudo-equatorial position.

Mild base hydrolysis of viomycin with 0.1 N NaOH at 100° C for 20 hours gave on ether extraction a good yield of 2-amino-pyrimidine m. p. $127 \sim 128^{\circ}$ C completely identical with an authentic sample. Since viomycidine was not present in the total hydrolysate of the resultant peptides it followed that the 2-aminopyrimidine must have been dried from the guanidine moiety.

It is evident that methylviomycin, formed by heating viomycin with methanol, is an Omethyl derivative of the guanidine-carbinol system (Ia, chirality at the carbinol centre not defined). The extraordinary reactivity of I is paralleled in the properties of the neurotoxin, tetrodotoxin⁹⁾ VI, the only other known naturally occurring compound possessing this unit.

> B. W. Bycroft L. R. Croft A. W. Jhonson Tessa Webb

Department of Chemistry, University of Nottingham, England

(Received December 30, 1968)

References

- BYCROFT, B. W.; D. CAMERON, L. R. CROFT, A. W. JOHNSON, T. WEBB & P. COGGON: Viomycin, further degradative studies. Tetrahedron Letters 1968-25: 2925~2930, 1968
- FLOYED, J. C.; J. A. BERTRAND & J. R. DYER: The crystal structure of viomycidine. Chemical Communication No. 16: 998~999, 1968.
- TAKITA, T. & K. MAEDA: The structure of the guanido amino acid moiety of viomycin. J. Antibiotics 21: 512~516, 1968.
- BYCROFT, B. W.; D. CAMERON, L. R. CROFT & A. W. JOHNSON: Synthesis and stereochemistry of capreomycidine. Chemical Communications: 1301~1302, 1968.
- Private Communication: BUCHI, G. & J. A. RALEIGH.
 RALEIGH, J. A.: Ph. D. Thesis. Massachusetts Institute of Technology, 1966.
- BYCROFT, B. W.; D. CAMERON, L. R. CROFT, A. HASSANALI-WALJI, A. W. JOHNSON & T. WEBB: The chromophore and partial structure of viomycin. Tetrahedron Letters 1968.
- HERR, E. B., Jr.: Chemical and biological properties of capreomycin and other peptide antibiotics. Antimicr. Agents & Chemoth. 1962: 201~212, 1963.
- Private Communication: TAKITA, T. & K. MAEDA: The structure of dihydroviomycidine. J. Antibiotics (in press).
- WOODWARD, R. B.: The structure of tetrodotoxin. Pure & Appl. Chem. 9:49~74, 1964.